Harmonic morphisms onto Riemann surfaces and generalized analytic functions
نویسندگان
چکیده
© Annales de l’institut Fourier, 1987, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Hopf Differentials and the Images of Harmonic Maps
In [Hz], Heinz proved that there is no harmonic diffeomorphism from the unit disk D onto the complex plane C. The result was generalized by Schoen [S] and he proved that there is no harmonic diffeomorphism from the unit disk onto a complete surface of nonnegative curvature. Unlike conformal or quasi-conformal maps between Riemann surfaces, the inverse of a harmonic map is not harmonic in genera...
متن کاملHarmonic Morphisms and Hyperelliptic Graphs
We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical RiemannHurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also disc...
متن کامل$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملOn Quasiconformal Harmonic Maps between Surfaces
It is proved the following theorem, if w is a quasiconformal harmonic mappings between two Riemann surfaces with smooth boundary and aproximate analytic metric, then w is a quasi-isometry with respect to Euclidean metric.
متن کاملHarmonic maps from degenerating Riemann surfaces
We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017